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The steady planar symmetric motion of an incompressible fluid, past a symmetric 
bluff body fixed in an otherwise uniform stream, is considered for large Reynolds 
numbers Re. A laminar-flow structure is proposed which consists primarily of (a) the 
large-scale flow and (b) the smaller, body-scale, flow. Here (a) involves a pair of 
massive, effectively inviscid, recirculating eddies set up behind the body and bounded 
by viscous shear layers. Each eddy has small constant vorticity and its length and 
width both increase linearly with Re, so that the large-scale potential flow outside 
the eddies is significantly disturbed from the oncoming stream. This reduces the 
effective free stream acting on (b). The latter has the Kirchhoff property of a parabolic 
growth in the eddy width downstream; but its eddy vorticity is non-uniform and 
substantial, contrary to the Kirchhoff and Prandtl-Batchelor models, and secondary 
separation is possible. The non-uniform vorticity is provoked by the thick return jet, 
which is forced back along the centreline in (a) from downstream. Buffer zones, e.g. 
of length ac Re+, are required to join (b) fully to (a). The resulting drag coefficient cD 
is believed to be 0(1 )  generally, and is controlled, along with the eddy length and 
vorticity, by a combination of the viscous-inviscid flow problems posed in both (a) 
and (b). A special case of small c, is also covered. The structure seems self-consistent 
so far, and tends to compare reasonably well with recent numerical solutions of the 
NavierStokes equations at increased Re, 

An Appendix describes the inviscid parts of (a) for relatively thin eddies. 

1. Introduction 
The planar, laminar, separating flow of fluid past a bluff body fixed in an otherwise 

uniform stream seems central to the understanding of large-scale recirculating eddies, 
and, despite its tendency to instability, i t  raises issues of both fundamental and 
technological concern. Much interest centres on the medium-to-high Reynolds-number 
(Re) regime, which has been reviewed extensively (e.g. Batchelor 1956; Smith 1979; 
Fornberg 1980). Many models have been proposed, and seem acceptable on a purely 
inviscid basis, including the Kirchhoff free-streamline solution, the Prandtl-Batchelor 
model and variants of these. But the list shortens considerably once viscous effects 
at large Re are studied, and indeed no model has been shown (yet) to be self-consistent 
with respect to the Naviedtokes equations then. In  that context the two proposals 
which have been most seriously considered are those of Kirchhoff and of Prandtl and 
Batchelor. The former happens to agree well with experimental and numerical 
findings at medium Re-values (Smith 1979, 1981), but nevertheless it leaves so far 
unanswered questions about its self-consistency at the closure of the main eddy 
(Smith 1983). The second proposal (Batchelor 1956) does not agree with experiments 
or numerical results to date, and no solution of its form has been determined yet for 
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FIQURE 1 .  Broad structure of the large-& flow, showing the O(1) body-scale motion, the massive 
O(Re) large-scale motion concerning the majority of the eddy, and the buffer zones in-between. The 
dividing streamline is shown by open arrows. 

external flow past a smooth body, as far as we know. That does not imply non-existence, 
of course, and no firm analytical objection has emerged so far; indeed, the Appendix 
to the present paper tends to suggest that such solutions may exist ; but the evidence 
supporting this proposal seems lacking, especially when viscous effects have to be 
incorporated. A third proposal (Acrivos et al. 1968)' based on a viscous eddy 
downstream, proves inconsistent because of the lack of a significant pressure 
variation there. The main eddy sizes, length-by-width, predicted in the above three 
proposals are, in non-dimensional terms, O(Re)-by-O(Rei), O( 1)-by-O(1) and 
O(Re)-by-O( 1) respectively, we note, while the corresponding predicted drag co- 
efficients cD are 0(1), o(l), O(1) in turn. 

Recent extensive computations (Fornberg 1985) of the Navier-Stokes equations 
at higher Re point to an alternative proposal, however, which is the concern of the 
present work. Fornberg's (1985) results for flow past a circular cylinder suggest an 
approximately linear increase of both the width and length of the eddy, with 
increasing Re. The corresponding flow structure for large Re has a massive O(Re)- 
by-O(Re) virtually free eddy and is discussed below (see figure 1). The discussion is 
based on Sadovskii's (1971) inviscid model (with a free eddy of constant vorticity) 
and on a tentative study (1977, unpublished) by the present author concerning the 
validity of that model in the context of viscous effects. The study was tentative 
because prior to Fornberg's (1985) computations there seemed to be no supportive 
evidence from numerical solutions of the Navier-Stokes equations. Fornberg's 
results, however, change that. t  

The proposal discussed below for the large-Re structure appears capable of 
resolving the basic difficulties encountered in previous proposals. In particular, the 
majority of the eddy has to be even wider than in the extended Kirchhoff proposal 
(Smith 1979), to generate inviscidly a pressure force sufficient to affect the viscous 
free shear layer and return centreline wake which bound the eddy. On the other hand 
the more local, body-scale, flow is not unlike the Kirchhoff form in that its 'open' 
eddy grows in width parabolically downstream. This is to set up a region of 
almost-stagnant fluid further downstream, between the thick return wake and t,he 
free shear layer, prior to the main eddy flow. Unlike both the Kirchhoff and 
Prandtl-Batchelor proposals, however, the new account involves a significant 
non-uniform vorticity in the end of the eddy immediately behind the body, this 

t The author is grateful to Mr J.  H. B. Smith for pointing out Sadovskii's paper in 1977 and 
to Dr B. Fornberg for providing a preprint of his (Fornberg 1985) paper. 
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vorticity being brought about by the return wake’s velocity profile and then being 
convected into the start of the main free shear layer downstream. 

Section 2 addresses the large-scale structure associated with the main eddy, 
discussing in turn the inviscid nonlinear balance between the eddy motion and the 
outer potential flow ; the viscous properties of the free shear layer and the returning 
centreline wake; and then the ultimate forward-travelling wake beyond. This is to 
find a first relation between the drag coefficient cD and the O(Re)-scaled eddy length L. 
Here cD is expected to be 0 ( 1 )  generally, which (92) corresponds to an eddy whose 
length LE N Re L and width H E  are both O(Re). The second relation fixing cD and 
L follows from $3,  where the body-scale motion is considered. It should be mentioned 
in passing that the slight displacement of the separation in this motion introduces 
strictly a correction effect O(Re4) in the flow field, as in Smith (1979), but below 
we omit that effect to simplify matters. The reversal of the thick return wake is 
achieved within the part of the eddy just behind the body, although possibly at the 
cost of provoking secondary separation ($3). Next, $4 discusses certain buffer regions 
necessary between the body-scale and large-scale motions, as well as the inviscid 
turning and splitting of the free shear layer during the eddy closure. Further 
comments are presented in $5,  while an Appendix considers the inviscid portions of 
the large-scale structure for a relatively thin eddy. The current account does not rule 
out the previous major proposals of course, by virtue of possible nonuniqueness, but 
the account does appear to be very promising; i t  is also broadly in line with 
Fornbergk (1985) results at higher Be-values. The numerical tasks required to test 
its validity are set down in the text. 

As regards notation, Cartesian coordinates l(z, y) and corresponding velocities 
u,(u, w )  = u,  u are taken, for an oncoming uniform stream (u,, 0) and a bluff body 
whose typical dimension is 1. The flow is assumed to be symmetric about the z-axis, 
and the body is smooth, e.g. a circular cylinder, although non-smooth shapes can also 
be accommodated. Steady laminar two-dimensional flow is considered, for an 
imcompressible fluid of density p and kinematic viscosity v, and the large Reynolds 
number is Re = u, l / v .  The pressure is written pu: p, with the free-stream pressure 
taken as zero, and the stream function u,Z+ is zero along the wake centreline. 
Finally, the Laplacian operator V2 denotes C12/CIz2 + a2/ay2. 

2. The main eddy-scale flow 
The massive main eddy has length and width both O(Re) (see figure 2), so that 

typically here (z,y)/Re = (X, Y) are 0 ( 1 ) ,  and the unknown eddy shape is then 
Y = S ( X ) ,  say, for 0 < X < L. Here the unknown eddy length L ,  = Re L to leading 
order. The flow structure consists of three main zones 1-111, in all of which p, I u I 
are typically O(1). The first is the predominantly inviscid outer zone I of fluid 
emanating from upstream infinity and hence governed by the nonlinear potential-flow 
problem of motion past, and attached to, the effective body shape Y = S ( X ) ,  to 
leading order. The second zone I1 is the majority of the recirculating eddy, inviscid 
and so having a uniform unknown vorticity. Third are the thinner viscous regions 
111, of characteristic thickness 0(1) but length O(Re). These are the free shear layer 
111, and the return wake 111,, for 0 < X < L, which act as vortex sheets bounding 
the inviscid zone 11, while zone 111, is the ultimate wake extending downstream from 
the eddy closure point B near X = L.  

In  the structure proposed here we have in mind principally the goal/property of 
an 0 ( 1 )  drag coefficient cD,  although a small cD value can also be dealt with later. 



178 

--y) = 0 

Velocity 
profiles 
in 111,: 

(Near A )  

In 1112: F 

into 111, 7 Goes 

into Ill, Ti;-- 
(Half - way) (Near B) 

(b )  

FIQURE 2. (a) The large-scale structure, comprising the inviscid O(Re)-by-O(Re) zones I and IT, of 
effectively zero and non:zero (constant) vorticity respectively, and the three viscous layers 
O(Re)-by-O(1) denoted IIIl,z,a. (a) Typical velocity profiles for the viscous layers 111, and 111,. 

As a check, a cD of O( 1) requires the mass deficit in the ultimate wake far downstream 
to be O(1) also, since from the global momentum balance in the Navier-Stokes 
equations 

2 (1 -u )  dy = cD, (2.1) s 
the integral here extending across the half-wake y >, 0 far downstream (see e.g. Smith 
1979). Hence the typical viscous displacement thickness of 111, must be O(1), and, 
from continuity through the closure process at B, the same thickness holds for 111,. 
That requires the typical lengthscale 2 of 111,, i.e. the eddy dimensions, to be O(Re),  
to balance inertial and viscous forces, given I u I = O( 1). Moreover, the O( 1) mass-deficit 
property also demands 111, to be a non-trivial zone, a genuine sheet of vorticity 
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variation, between I and 11. So this rather tends to favour the account of Sadovskii 
(1971 ), who addresses the purely inviscid problem of the coupling/self-consistency 
necessary between I and I1 to ensure continuity of pressure and tangential flow at 
the boundary Y = S ( X )  f . A special case also encompassed by the present structure 
occurs, with cD probably small (see also 95), in which there is not a genuine vortex 
sheet between I and 11, i.e. the flow speed is also continuous at Y =  S ( X ) ,  
corresponding usually to only a small mass deficit in 111, and hence in 111,. The 
inviscid problem in this special limiting case is studied by Pierrehumbert (1980). To 
be definite, however, let us suppose for the most part that cD is 0(1) in general and 
take Sadovskii’s inviscid model. Further support for the proposition that cD is 0(1) 
is given in 93 below, with other relevant comments deferred until 95. 

2 .l. The inviscid regions I and I1 
In I and I1 the flow solution then expands in the form 

($, u, P) = (Re 3,219 F )  (X, Y )  [ I +  O(Re-l)l ,  (2.2) 

and so the NavierStokes equations reduce to the Euler equations there, to two 
leading orders at least. Conservation of vorticity therefore yields the governing 
equations (2 .3a)  

(2 .3b)  
with O2 = a2/aX2 + a2/a YZ. Here the scaled vorticity constant is unknown, but O( 1) 
and negative, its constancy following from the Prandtl-Batchelor argument for closed 
streamlines. The unscaled vorticity - V2$ - Re-’ D. The boundary conditions 
relevant are, with subscripts I and I1 relating to the zones I and I1 in turn, 

at Y = O ,  I $,, = 0 (0 < x < L) ,  

$I = 0 (X < 0, x > L) 

at Y = S ( X ) ,  I $1 = $11 = 0, 

FI = P I 1  

N Y in the far field. 

( 2 . 3 ~ )  

(2 .3d)  

(2.3e) 

(2 .3f  1 
(2 .3g)  

Sadovskii (1971) gives a small family of numerical solutions of exactly this coupled 
inviscid problem (2 .3)  for $, and g I I .  Although the details shown are perhaps rather 
sketchy, the results appear to depend on only one parameter, effectively the Bernoulli 
constant C,, at the boundary of zone I1 or equivalently the vorticity constant H, for 
a given length L, as might be expected. Here 

t on the boundary Y = S ( X )  + , 
C,, on Y = S ( X ) - ,  

p+@ = (2 .4a)  

where Q = (f?+G)i is the flow speed and ij = -a$/aX. So, in view of ( 2 . 3 f ) ,  the jump 
in (speed)2 across the shear layer 111, is $-sI = 1 -2C,,. Sadovskii’s parameter is 
then h = 4 ( 1 - 2 C 1 1 ) / ( ~ L ) 2 ;  see also the Appendix. 

The symmetry of the eddy shapes computed by Sadovskii agrees with the flow 
reversibility possible at this inviscid level, while near the endpoints A and B the 
shapes should have a (distance)$ form in general. For, if the eddy flow I1 is to turn 
back at A or B, & + O + ,  in effect the local flow in I is equivalent inviscidly to that 
past a detaching vortex sheet, for which the t power holds (e.g. J. H. B. Smith 1977; 
F. T. Smith 1978) given the tangential departure which seems necessary a t  A and 
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B inter alia to join with the body-scale flow below. Therefore the velocity and pressure 
in I near A are finite, with 

P(0,O) = c,,, G,(O, 0) = (1 -2c&. (2.4b) 

Limit properties of interest exist for CII+O, giving a linearized potential flow as 
described in the Appendix, and, secondly, for C,, ++, corresponding to Pierrehumbert 
(1980) but subject to non-uniformities (see Smith 1984) close to the endpoints A 
and B. 

The results of Sadovskii are presented in terms of the normalized variables 
[$*, X,, Y*] = [4$/la I L2, 2X/L- 1 , 2  Y/Z), we note, giving a normalized length of 2 
and vorticity - 1 ; but the scaled eddy length L and vorticity a remain undetermined 
of course. Sadovskii’s results in fact predict a$,/a Y* in the far field for a given h-value, 
i.e. they predict 2/1alL (from (2.39)) for a prescribed C,, value (however, see also 
the Appendix). Thus, even for a given L-value, the solution of the inviscid problem 
(2.3) still depends on the vorticity a and exists for a range of values of a. To fix a 
and L specifically, we must then move on to viscous effects, as follows. 

2.2. Viscous effects: regions 111,. , 
Basically the viscous layers III,,, now act to determine the value of h, i.e. of a L ,  
through a ‘periodicity ’ condition of continuity, around the circuit 

A + 111, + B+ 111, + A .  

And the viscous layer 111, then fixes L, through the ultimate-wake-displacement 
balance in (2.1), and hence fixes a, in terms of a given drag c D ;  see below. These 
viscous criteria could well settle matters uniquely, although non-uniqueness is still 
not impossible. 

In the viscous free shear layer 111, and the return wake 111, (figure 2) (both of 
O(1) thickness) the flow solution is 

( $ , p )  = (Y, P)+O(Re-l) (2.5) 

with the normal coordinate, n say, 0(1), but the local streamwise coordinate is O(Re). 
Hence the vorticity -Vz$ is O(1) here. The boundary-layer equations hold in 111, 
and 111,: 

i3Q aYaQ i3P P Q  
Q = &aY/an, Q - + - -  = --+-, 0 = -aP/an, (2.6a, b, C) 

as - as an as an2 

where s stands for the arclength in 111, (scaled with respect to Re), and -X in 111,, 
while Q is the effective velocity in the s-direction, i.e. -u in 111,. The match with 
zones I and I1 requires 

(2.6d) 

given (2 .6~) .  The normal boundary conditions on Q and Y applying here are 
respectively to merge 111, with I and 11, to merge 111, (where n = y) with 11, and 
to satisfy the symmetry condition at  the centreline: 

P = p ( X ,  S ( X ) )  in III,, p ( X ,  0) in 111,, 

in 111,, I G , [ X , S ( X ) + ]  as n+a3 

uII[X, S ( X )  - ] as 12 + - GO 
.. 

(2.69) 
in 111,. 

(2.6h) 

Q+ -GII(X,O-)  as n+w, 

aQ 
an 

- Y = O  a t n = O  -- 
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The other conditions necessary correspond to the periodicity requirement above. This 
relies on the dynamics of the smaller-scale zones near A and B considered subsequently, 
but in anticipation of them we may take the 

Q-profiles to be continuous through A, B. (2.6i) 
This is justified later. The continuity here involves only the lower part (Y  < 0) of 
111, being turned and reversed at X = L- to  form the starting profile for the 
integration along 111,; whereas the starting profile for 111, at x = O +  has a 
discontinuous form generally, comprising Q = iiI(O, 0) for n > 0, Q = -u(O+ , -n)  
(evaluated from 111,) for n < 0 owing to the turnabout of the profile attained in 111, 
at X+O+ (see figure 2). 

It should be remarked here that we are assuming single-structured layers 111, and 
111, in which fluid moves forward in the 8-direction throughout. The alternative of 
a secondary separation happening on this scale is disregarded for now, although the 
means for its occurrence is provided by the layer-splitting process described by Van 
Dommelen (1981) and Elliott, Cowley & Smith (1983), if required. The occurrence 
would affect, but not wreck, the current scheme of things. Again, it is probable that 
the return viscous wake 111, does not come to rest as X+O+ near A, despite the 
driving velocity UII in (2.68) doing so. The momentum generated around the circuit 
A + 111, +I3 + 111, is virtually certain to leave a jet-like profile in 111, at the approach 
to A:  a similarity solution, by contrast, is not possible there. This ‘leftover’ return 
jet then forms a downstream boundary condition for the body-scale flow discussed 
in $3 below. 

The viscous problem (2.6) is best normalized now, in view of the normalization 
referred to in J 2.1. If 

[ Y , Q , P , s , n ]  = [+L(aIiY,, ~LI~IQ,,~Q2L2P,,+L(1+8*), Ial*n,], (2.7) 
then the starred variables satisfy (2.6) still, with subscripts * inserted throughout, 
and the driving (inviscid) velocities 4, in (2.6) then are as determined in Sadovskii 
(1971). Hence the only parameter active is la1 L, controlling U,, and so the 
periodicity requirement (2.6i) is expected to fix lalL, perhaps uniquely. The 
necessary numerical solution of (2.6) should be of much interest. 

2.3. Determining L(cD) 

Lastly, and almost separately, one may address the ultimate wake 111,. This fixes 
L for a given value of cD as follows. In III,, where X > L, the boundary-layer 
equations (2.6u-c) apply again, since 111, is also O(1) thick, with n representing y 
and Q = u to leading order. The starting profile for 111, at X = L +  is the upper part 
(Y > 0) of the free shear layer 111, at X = L-  , given again the continuity of vorticity 
through B (see below). Normalizing as in (2.7) then, we still have the boundary-layer 
equations for 111,. But the results of 82.2 should fix both Y, in III,, at X, = 1-  
(X = L-), and the value of L. Hence, for 111,, the normalized starting profile 
at X, = 1 and the subsequent driving velocity ii, beyond are both prescribed. These, 
together with the centreline conditions aQ,/an, = Y, = 0 at n, = 0, are sufficient 
to determine the normalized solution throughout 111,. 

In particular as s, = X*+ ao, although 111, expands slowly like $*, its normalized 
displacement thickness (2/1BI L-Q,)  dn, remains O(1) (Smith 1979) as both ii, 
and Q ,  approach the free-stream value 4, = 2/1al L. So the global balance (2.1) 
becomes 

2 
(2.8) I a 1’ x*+w lim [s,” (m-&*) dn*] = cD,  
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in view of the normalization (2.7). Here, however, the integral is known at this stage 
from the normalized solution in 111,, as is la1 L from 52.2. Therefore (2.8) yields a 
first relation between L and c,. 

This first relation can be found from a single forward integration of the normalized 
boundary-layer equations for layer 111,, again a necessarily numerical task. The task 
seems unavoidable, we note, because the driving velocity ii* due to zone I (Y+O+)  
is non-uniform, increasing between B and downstream infinity ; hence the momentum 
integral (Smith 1979) in the wake 111, gives 

So the ultimate wake displacement for large X,, required in (2.8), depends significantly 
on the entire solution in 111, beyond B, in contrast with the case considered by Smith 
where E* is constant. 

In  summary, so far, the following calculations are required in sequence for 
the determination of the scaled eddy length as a function L(c,) of the leading-order 

1. Solve the inviscid problem (2.3) in normalized form as in Sadovskii (1971) (see 

2. Solve the viscous ‘periodic’ problem (2.6), normalized, to evaluate IalL. 
3. Solve the ultimate wake problem, normalized, with (2.6u-e), to find L and a 

from (2.8) for a given C, value. 
The flow structure appears so far to be self-consistent, but the normalized 

calculations proposed above should help settle the issue, uniquely or otherwise. 
Calculation 2, for instance, seems unlikely to have solutions in the two limits referred 
to just after (2.4b). 

The second relation required between L and C, emerges from the discussion below. 

drag cD. 

also the Appendix). 

3. The body-scale flow 
The body-scale flow, where z, y are broadly O( l) ,  is like that in Smith (1979), with 

the wake being ‘open’ when viewed locally; but two extra features are present now. 
First, the eddy, where $ < 0, is not relatively slow or dynamically negligible to 
leading order because the return jet left over from layer 111, above has O( 1) thickness 
and velocity, thus causing a significant eddy motion (see figure 3). Secondly, the 
match with the eddy-scale flow of 52 requires, from (2.4b), 

u+ (1 - 2C,,)t, p + c,, (3.1) 

in the far field, viewed locally again, for the motion outside the eddy. Therefore the 
effective mainstream velocity operating for the body-scale flow is reduced significantly 
from the true free-stream value u = 1, the latter being attained only at distances 
longer than the O(Re) eddy scales. 

Given the return-jet profile exactly, we may determine all the features of the 
body-scale flow and hence fix the drag c,. But at  this stage only the maximum O(1) 
speed and the normalized shape of the return jet are known, -u = +lnlL&*(lnliy), 
not the exact profile, since 52 specifies L(c,) and B(c,) only as functions of c,, via 
(2.8). The body-scale flow must therefore be solved for varying a or L to obtain c,@) 
as a function of a. That, combined with (2.8), should pin down both C, and a, perhaps 
uniquely so. More details are as follows. 
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FIGURE 3. Structure of the O(1)-by-O(1) body-scale flow, showing main regions IV-VII. The return 
jet profile P(0, y) indicated is from layer 111, downstream and is then turned by zone V. Significant 
secondary separation is neglected. 

3.1. Inviscid zones I V and V 
The body-scale flow has, first, the two effectively inviscid zones IV and V. Here IV 
is governed by Laplace's equation for + with relative error @ R e f ) ,  and is the 
continuation of region I of $2. In zone V, which is the upstream end of the eddy, 
the vorticity-conservation equation holds, V involving the forced continuation and 
turning by inviscid means of the O(1)-thick return jet left over from layer 111,. This 
return jet is now an acceptable feature of the body-scale flow, unlike in Smith (1979) 
for example. If ($ ,p)  = ($,,p,)+O(Re*) for x , y  = 0(1 )  then the Navier-Stokes 
equations yield here 0 inIV, 

"" = d8Y/dy2(O+, Y) inV, 
( 3 . 2 ~ )  

(3.2b) 
since the profile Y in 111, as X+O+ fixes the non-uniform vorticity entering V. At  
first sight, the appropriate boundary conditions are 

(1 - 2C,,$ y in the far field of IV, ( 3 . 2 ~ )  

Y(O+,y) asz+oo inV,fory=O(l ) ,  (3.2d) 

$IJ = on the centre-line, in I V  and V, (3.2e) 

$ 0 -  { 
on the body, on y = D(x)f , and 

p, to be continuous at y = D ( z ) .  (3.2f 1 
Here y = D(x)+o( l )  defines the unknown position of the viscous free shear layer 
dividing IV from V, starting at the separation point C on the body and proceeding 
(via $4 below) to merge eventually with the start of the free shear layer 111, further 
downstream. Further, although secondary separation on the body surface in V may 
upset the pure tangential-flow condition on the body in (3.2e), this is in some sense 
a secondary issue. It is not disastrous conceptually for the current theme; it is more 
a nuisance of detail as regards determining c,(H). Indeed, it need not necessarily 
happen (see $3.2). Again, the account of the separation process at point C (fig. 3) is 
as in F. T. Smith (1979), abetted by J. H. B. Smith's (1977) and F. T. Smith's (1978) 
showing that the pressure effect in V is negligible there. The process does demand, 
however, that to leading order 

(3.29) the separation at C is 'smooth', 

and this also provokes the O(Re-if) corrections mentioned in $ 1. 
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From (3.2b, d )  i t  is plausible to expect a velocity profile independent of x (apart 
from a displacement) to emerge just under the shear layer as x -+ 00, in V. To conserve 
vorticity then, from (3.2b) and Beriioulli’s law, 

$o - Y ( O + , D ( s ) - y )  (3.2h) 

corresponding exactly to the required turning of the incoming backward jet profile, 
as assumed in (2.6i) previously. Between the incoming and outgoing jets (3.2d, h) 
the fluid slows down, for large x in V, ready to latch onto the upstream end of zone 
I1 subsequently. Moreover, as noted in 1, 

as s+oo in V, with D - y  = 0(1), 

D(x) N bx: as x + 00, (3.3) 
where the O(1) constant b is related to cD, similarly to Smith’s (1979) case. Thus an 
0(1) drag, due to the O( 1) pressure forces acting on the body, forces b to be O( 1) and 
forces an opening wake on this scale. This opening splits the outgoing profile (3.2h) 
from the incoming one (3.2d). The condition (3.3) is also consistent with respect to 
the far fields of zones I V  and V and the momentum balance in zone IV ,  as in Smith 
(1979), given the reduced mainstream in (3 .2~)  and (3.1). 

The central problem here, then, is to solve (3.2), with the property (3.3). It is a 
difficult computational problem in general, although limit solutions (Kirchhom exist 
in closed or almost closed form when the eddy motion is relatively slow, for certain 
body shapes. The solution of (3.2) determines c , ( a ) .  

3.2. Viscous effects 

These comprise mainly two traditional O(Re-l) boundary layers V I  (figure 3), one 
lasting from the front of the body to C ,  the other going from the rear D of the body 
to C, according to the proposition above. The former, VI,, should remain attached 
under a prescribed favourable pressure gradient until abruptly, around C ,  it is forced 
to separate by the triple-deck interaction ; more details of this are as in Sychev (1972) 
and Smith (1979). The second boundary layer, VI,, however, after being accelerated 
from D ,  is subject to a decelerating driving velocity before the clash a t  C, since C 
is an inviscid stagnation point. Accordingly, VI, cannot both persist in attached form 
all the way to C and come to rest then. Instead it must either separate at  an 0(1) 
distance from C, inducing an O( 1)-sized secondary separation, or produce a jet-like 
profile left over at  the onset of C. The latter case, where VI, stays attached, is possible 
because the adverse pressure gradient there is not indefinitely large; i t  is only finitely 
so (cf. J. H. B. Smith 1977; F. T. Smith 1978). 

Which case occurs is dependent largely on the particular body shape, but either 
case should produce a secondary separation, of small or O( 1) extent. A multiple-eddy 
formation in fact is not impossible. The local secondary separation involving the jet 
above is described in Smith (1978). The occurrence of secondary separation, however, 
does not wreck the broad structure proposed, as we have noted before, and it is a 
matter of calculation (for layers VIl, ,) to find out whether the secondary separation 
is significant or not. 

The two boundary layers VI then join, locally or otherwise, to form the O(Re3)  
viscous free shear layer VI I .  This is driven forward by the slip velocities uo(s, D(x)  f ) 
produced in zones IV  and V just outside. Its pressure is po(s ,  D ( X ) ) .  Provided the 
centreline return jet’s speed Q(0,O) entering zone V is different from the reduced 
mainstream speed (1 - 2C,,)!, the slip velocities above are then unequal, from 
Bernoulli’s theorem in IV and V. So VI I  expands in thickness as Re-: xi downstream, 
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in a Chapman-like similarity form as x - t o o .  This eventually merges with the O(1) 
turned jet-like profile in (3.2h), further downstream (see 94), to form the discontinuous 
starting profile for layer 111, already noted in 92. 

4. Buffer zones and eddy closure 
4.1. Buffer mms 

One such zone is necessary to convert the parabolic growth of the eddy width 
emerging from the body-scale flow, in (3.3), to the (scaled distance)$ growth holding 
just beyond A in the larger-scale motion of 92. This occurs where d - Be(x/Re)!, 
i.e. 

2 = O(Rei). (4.1) 

The conversion is a fairly simple affair, however. For the typical eddy width then 
is O(Bef), and so its slope is small, O(Re-1). Hence outside the eddy linearized potential 
flow properties hold then, while inside the velocity profiles of O(1) thickness 
associated with (3.2d, h) continue unaltered apart from a displacement effect. The 
pressure variation induced can be relatively small, with the eddy boundary here being 

to keep the eddy pressure at C,,+o(Re-f) by virtue of the a, d dependence in (4.2). 
The constant bis the coefficient in the starting shape Y - bX$ of the large-scale eddy 
in 92. Little motion takes place in the O(Re4) by O(Re1) region lying between the return 
and forward jets. Again, the displaced viscous shear layer of thickness O(Ref)  carries 
on in the Chapman-like form, surrounding the curve (4.2). This form combines with 
the forward-moving displaced jet (3.2h), of 0(1) thickness, at the start of the vortex 
sheet 111, as x then increases to O(Re) downstream. 

A similar buffer zone is necessary during the eddy-closure process below. Other 
smaller buffer zones also arise, e.g. close to the separation point at C, just as in Smith 
(1979), but they have little significance globally. 

4.2. Eddy closure 
The mechanism for the turning near the eddy-closure point B is predominantly 
inviscid, much like that studied in 93, but simpler owing to the absence of any solid 
surface (see figure 4). At O( 1) distances around B, the shear-layer slope must again 
become 0(1), comparable to its thickness, to induce an O( 1) local pressure change 
sufficient to turn the flow. The governing equations there, for x- L Re ( = Z), y of 
0(1) ,  are in effect 

again, with @ = 0 on y = 0 for symmetry. The local non-uniform vorticity -f(+) is 
prescribed by the incoming displaced profile of the O(1) shear layer 111, as X + L - ,  
c.f. (3.2 b). This profile varies from (1 -2C,,)! at its upper extreme to zero underneath. 
Therefore, to conserve vorticity, exactly the same profile emerges after the closure 
process, but now split into two, one half going upstream into the start of the return 
wake 111,, the other half proceeding downstream to form the start of the ultimate 
wake 111, (figure 4). A minor viscous sublayer of width O(Ref)  astride the centreline 
reduces the vorticity to zero in place of the non-zero value -f(O). 

V2$ = f($) (4.3) 



186 F. T. Smith 

\' - 

111,- - O(1) - 
x =L, 

FIGURE 4. The eddy-closure process, including the O(Re4)-length buffer zone. A similar buffer 
zone is present between the structures of figures 2 (a) and 3. 

The exact turning/splitting above, near B, justifies the assumption (2.6i) made 
earlier, although a computation is required to solve (4.3) entirely; cf. the account of 
Messiter, Hough & Feo (1973) in a different context. Further, the incoming flow 111, 
sits on a curve whose y-positioning grows like 1514 as 5+ - 00. The one-half power 
here, like that in (3.3), enables the pressure variation to be negligible, as Z+ -a, 
thus allowing the flow velocities to become small in the gap between the incoming 
free shear layer and the outgoing return wake at large negative 5. This leads on to 
another buffer region of almost-stagnant fluid lying between, and matching to, the 
eddy-closure zone described by (4.3) and the main eddy zone I1 considered earlier. 
A similar almost-stagnant region occurs near the upstream end of the eddy. These 
regions may or may not be distinct from the two buffer zones (Bet-by-Ref) which 
control the switch from (distance): to Re(distance/Re)i eddy shapes; the buffer near 
A has been described in $4.1, and the other near B is likewise necessary to join the 
eddy-closure zone of (4.3) to the main eddy 11. 

5. Further comments 
Certain other details of the flow structure proposed can be worked through, but 

the new numerical tasks posed already ($52 and 3) represent the most crucial aspects. 
These tasks are, first, to pin down an acceptable inviscid solution among those of the 
Sadovskii kind by solving the viscous problem (2.6) around the eddy boundary (see 
also Burggraf 1970 ; Riley 1981) ; secondly, to solve the normalized ultimate-wake 
problem (§2.3), thus obtaining a first relation between the drag cD and the scaled eddy 
vorticity 31; and, thirdly, to tackle the main body-scale problem (3.2), which yields 
the required second relation between cD and 31. The limit calculations entailed here 
should prove very interesting, and difficult. 

These calculations and others posed should also help settle some significant issues 
arising, such as whether secondary separation occurs or not, and the equality or 
otherwise of the flow speeds qI and qII at the edges of the free shear layer in the 
eddy-scale motion. A small amount of suction at the body surface could suppress 
secondary separation. We note also the absence of secondary separation in Fornberg's 
(1985) computations so far. But the question associated with qI and qI1 is a little more 
involved. So far we have tended to suppose the more general case of Sadovskii (1971), 
that qI -+ qII, which then corresponds to cD being O( 1 )  with the eddy dimensions O(Re) 
generally, in view of the balance (2.1). If the alternative special case ijI = GII 
(Pierrehumbert 1980) holds, however, there are two perhaps rather disquieting or 
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puzzling features also present. One is that the large-scale eddy becomes increasingly 
blunt in shape (see Smith 1984) on its approach to the point A representing the 
body-scale flow. The match with the latter is therefore more involved, with the 
velocities there being reduced by an order of magnitude. The second feature is that, 
in line with the reduced velocities near the body, cD can then be small, with the viscous 
layers I11 then being governed by linearized properties invoking displacement effects 
o(l) ,  from (2.1). Neither feature seems quite as physically sensible or necessary as 
those associated with the more general case taken above. Although an 0 ( 1 )  value of 
cD is still possible in the alternative case if the starting profile for the free shear layer 
111, near A (where q1 = qII+O) is non-zero or non-uniform, the present view rather 
tends to favour the more general case. We should emphasize nevertheless that as yet 
the objections to the alternative case are far from firm. 

Preliminary comparisons with Fornberg’s (1 985) results for the Navier-Stokes 
equations do not seem unfavourable, at higher Reynolds numbers Re. The linear 
increase of both the eddy length L E  and width H E ,  with increasing Re, emerges 
approximately for Re above 400 (Fornberg’s figures 10, 11) for the circular cylinder. 
The slopes of HE versus Re and L E  versus Re there are about 0.032-0.047 and 0.15 
in turn. Their ratio, in the range 0.21-0.31 approximately, then encompasses some 
of Sadovskii’s limiting forms (which hold for 0 < H E / L E  < 0.293 approximately; see 
the Appendix) and Pierrehumbert’s case (HE/LE x 0.293). A not dissimilar estimate, 
but very close to the Pierrehumbert value, is made by Fornberg (private communi- 
cations, 1984,1985). Likewise, comparisons concerning the drag cD, the pressure, and 
the vorticity in the eddy and in the viscous layers (Fornberg 1984, figures 7-18), can 
be made. In  particular, cD eventually falls below the Kirchhoff value 0.50 for the 
circular cylinder at large Re in Fornberg’s figure 18: this is in line with the combined 
drag-reducing effects of the reduced mainstream (3.1) and the O(1) vorticity (3.2b) 
and increased pressure which act in the eddy, within the body-scale flow. Also, the 
calculated vorticity and pressure on the cylinder in Fornberg (1980, figures 12, 14) 
appear not inconsistent with the proposed triple-deck separation (Smith 1979) taking 
place at a position C downstream of the Kirchhoff value due to the significant eddy 
motion now included. These comparisons are preliminary, it should be emphasized, 
and firmer tests must await the limit computations noted. 

Subject to those computational studies, however, the flow structure for large Re 
appears to be self-consistent. It consists principally of the large-scale motion past, 
within, and around the border of, the massive Re-by-Re eddy, and the body-scale 
motion of typical O( 1)  dimensions. These two scales combine to fix cD and a, perhaps 
uniquely. The body-scale motion is not entirely of the Kirchhoff form then, since 
significant non-uniform eddy vorticity is present there, but it does have the Kirchhoff 
characteristic of a parabolic widening of the ‘open’ wake/eddy downstream. This is 
joined to the (scaled distance)# start of the large-scale eddy via a buffer zone. If the 
structure is correct it could give a great boost to the understanding of many kinds 
of separation eddies. The dominant feature is that most of the eddy, of size much 
greater than the body, has significant motion within it, at constant vorticity, and this 
same feature might be expected to occur in other separating flows. (This is provided 
the eddy size is not confined deliberately: confinement, as in a driven cavity, in flows 
through tubes, or in cascade flow, can set up Kirchhoff or Prandtl-Batchelor motions 
instead, as could non-uniqueness in the present unconfined flow.) The other flows of 
interest here include non-symmetric ones and the smaller-scale ones associated with 
thin airfoils, cascade flows or interactive boundary-layer separations (e.g. triple-deck), 
which more commonly give stable separation eddies in practice. For these smaller-scale 
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phenomena, moreover, even with the increased likelihood of secondary separation 
occurring if an eddy totally adjoins a solid surface, the eddy-flow features could well 
prove more accessible to analysis, as in the Appendix below. 

A preliminary version of this paper appeared as Smith (1984); see also Peregrine 
(1985). The author is grateful to Dr B. Fornberg, Professor N. Riley, M i  J. H. B. Smith, 
Dr M. J. Werle and the referees for their interest and helpful constructive comments 
on the problem. 

Appendix. Properties of the inviscid problem (2.3), for relatively large 
negative vorticity 

The following analysis points to the properties of solutions for the main large-scale 
inviscid problem (2.3u-g) at the extreme of large negative values of the scaled 
vorticity BL, where the constant C,, in ( 2 . 4 ~ )  is small. This gives a relatively thin 
eddy, in contrast with Sadovskii’s and Pierrehumbert’s results for the thickest eddies 
obtained at the other extreme, where C,, is equal to or numerically close to t. When 
BL is large and negative we expect the flow solutions in zones I and I1 to have the 
form 

$I = Y+O(I@L1-2), = I$X-~$,~+..., (A 1) 

with S ( X )  = +L I @ L  (-2 &x,) + . . . , Y = i~ I $ ~ L  1-2 P (A 2) 
Here we use X, as defined in $2, in place of X, or in effect normalize L to be equal 
to 2. The orders taken in (A 1) and (A 2) are such that the pressures induced in zones 
I and I1 are both typically O(lHLI-2). The induced pressure in the outside zone I is 
due to linearized potential flow, while that inside the eddy I1 is from the thin-layer 

in zone 11. 

Euler flow holding there, governed by a2$II/i3P = +L in view of (A i) ,  (A 2) ind  
(2.3b). Hence 

J,, = iL( P- FR), (A 3) 
so that from the steamwise momentum balance 

to leading order, where is an unknown constant. Equating (A 4) to the surface 
pressure produced by the thin eddy in zone I, we have then the nonlinear integro- 

O-&!?(X*) = 
differential equation 

for the unknown eddy shape 8 ( X , ) ,  subject to the conditions 

5( * 1) = 8’( k 1) = 0. (A 6) 

In (A 5) the Cauchy-Hilbert integral represents a principal value, and the origin of 
the X, coordinate is at the eddy centre. The condition in (A 6) of zero slope at the 
ends of the eddy is required in general for the solutions of (2.3), as noted in $2, in 
order to match ultimately with the body-scale flow, and it rules out the possibility 
of the elliptical shape considered by Sychev (1967) and Smith (1979). 

The governing equation (A 5) is an integrated form of the Benjamin-Ono equation, 
for steady flow or nonlinear travelling waves, but with the unusual feature of being 
confined to a finite interval I X, I < 1. The author’s attempts to solve (A 5) and (A 6) 
analytically proved inconclusive, and so a numerical approach was adopted. The main 
difficulty encountered in this was to find a way of avoiding the trivial solution with 
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and g identically zero, on the one hand, and, on the other, the host of solutions 
with A!?( f 1)  infinite, corresponding to locally parabolic eddy shapes near X, = f 1, 
whereas (A 6) requires the cuspidal behaviour 8 cx (1 - I X, 1); as X, +. & 1. So we set 
8 = bfl, assuming bto be positive (see below), and integrated (A 5) by parts to obtain 
formallv the eauation 

for f l (X, ) ,  with the constant a2(m @) to be found. Here f l  satisfies (A 6) with 8 
replaced by fl. A guess waa made for the value of u and for the g(&) distribution 
on a uniform grid in X, between X, = - 1 and X, = 1, with grid size AX,. The left- 
and right-hand sides of (A 7), effectively the eddy and outside pressures respectively 
(say and were then evaluated at  each grid point X,, and the fl-distribution 
was updated by setting 

at each X,, with o being a positive relaxation factor (typically set as 0.01). The sign 
of w here was chosen so that the analogous unsteady equation, with afl/at in effect 
added to the left-hand side of (A 7), is stable to short-wavelength effects. The value 
of u2 was also revised at this stage, to enforce the constraints in (A 6), by means of 

flnew = floold+w@I-@II) (A 8) 

the integral property 

A-UZ 

derived from integration of ( A 7 )  and inclusion of the end conditions (A6) .  The 
property (A 9) also justifies the earlier assumption that b is positive. The latest gnew 
distribution obtained from (A 8) was then used to evaluate the integral in (A 9). Given 
new values of both f l  and u2, therefore, the above process could be repeated, by 
working out new values and reapplying (A 8) and (A 9), and so on. The 
iterations were continued until the pressure differences PII-hI were reduced to 
sufficiently small levels, of about 10-O. 

All the integrals involved were approximated by a trapezoidal rule. To preserve 
accuracy in the principal value (A 7) in particular, we subtracted out the singular part 
of the integrand at 5 = X, and determined it analytically, thus replacing the 
right-hand side of (A 7) by 

and 

and approximating the integral in (A 10) numerically. This part of the procedure was 
checked by comparisons with analytical results for certain f l ( X )  forms satisfying the 
required cuspidal behaviour at I X, I = 1 (see above), and it stood up well to such tests, 
despite the very slight irregularity of the integrand in (A 10) as X, + & 1 due to the 
CUSPS there, The whole procedure also gave converged results which appeared to 
conform satisfactorily with first-order accuracy as the grid size was refined, in line 
nominally with use of the trapezoidal rule. Thus the values obtained for c were 1.3188, 
1.3440,1.3562 and 1.3621 from the step sizes AX, = 0.04,0.02,0.01 and 0.005 in turn, 
and these extrapolate well linearly to give the estimate 

u = 1.368 
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FIGURE 5. (a) The numerical solution of (A 5) or (A 7), symmetric about X, = 0, showing the 
reduced eddy shape 8( = 8/W) and the pressures = PI (the left-and right-hand sides of (A 7)), 
versus X,, where u = (@)k is given in (A 1 I) .  This describes the properties of (2.3) for small values 
of CII or large InLI. (b) The inviscid eddy-thickness/length ratio S ( X ,  = O)/L and the effective 
vorticity HL, versus the Bernoulli constant CII, according to the prediction (A 12) (-) for small 
C,, and to calculated results (0, x in turn) read from Sadovskii (1971). 

in the limit of zero step size. The full extrapolated solution for L?and@,( = is shown 
in figure 5 (a). Various starting guesses were made, and all led to the same converged 
symmetric solution within the limits of accuracy. The solution appears sensible 
physically, with the eddy pressure @, = decreasing from unity at the ends of the 
eddy to a negative value in the middle. Again, the numerical behaviour near the ends 
seems in keeping with the form for I X, I -+ 1 - , implied by 
(A 7), since 8 oc (1 - 1  X, I)$ then. 

The dependence of the mid-eddy-thickness/eddy-length ratio, and DL, on the 
Bernoulli constant C,, predicted from the above is 

= @,, = 1 + O( 1 - I X, 
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where cr is given in (A 11) and c1 is 1.702 according to our extrapolated numerical 
results in figure 5(a) .  

This solution for small C,, (large laLI) tends to reinforce belief in the existence 
of solutions to (2.3) at O(1) values of CII, it may be useful in constructing such 
solutions computationally, and it complements Sadovskii’s results obtained for 
values of C,, close to a. It suggests further that some parameter (e.g. CII) 
other than Sadovskii’s parameter h should be used to characterize these flows, since 
h = 4(1 -2C,,)/(aL)z tends to zero at both the extremes CII+O (see (A 12)) and 
C,, ++. Figure 5 ( b )  presents the dependence of the eddy thickness/length ratio, and 
n L ,  on the parameter CII, according to the prediction (A 12) and to Sadovskii’s four 
calculations. The two sets of results are fairly close, given the asymptotic nature of 
(A 12). Finally we observe that the governing equation (A 5 )  can arise in principle 
in the triple-deck formulation of small-scale subsonic separation eddies. So the finding 
of a computational solution above is an encouraging feature in that context, as it 
is also in the context of Prandtl-Batchelor flows where, for a thin eddy, attached to 
a thin body, say, (A 5 )  may again come into play. 
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